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Chapter 1

Ramsey’s Theorem

1.1. Ramsey’s Theorem for graphs

Definition 1. A graph G = (V ,E) is a set V of points, called vertices, and a set E of
distinct pairs of vertices, called edges.

Definition 2. A subgraph G′ = (V ′,E′) of a graph G = (V ,E) is a graph such that
V ′ ⊆V and E′ ⊆ E.

Figure 1.1 below depicts a graph G with four vertices V = {V1,V2,V3,V4} and
four edges E = {e1, e2, e3, e4}, where e1 = {V1,V2}, e2 = {V2,V3}, e3 = {V3,V4}, and
e4 = {V2,V4}. Note that edges are unordered pairs of vertices, meaning that {V1,V2}
and {V2,V1} refer to the same edge. Next to it is a graph G′ = (V ′,E′) with V ′ =
V = {V1,V2,V3,V4} and E′ = {e1, e3}. Since V ′ ⊆V and E′ ⊆ E, we deduce that G′ is a
subgraph of G.

Figure 1.1: A graph G and one of its subgraphs G′.
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4 CHAPTER 1. RAMSEY’S THEOREM

Definition 3. Given n ∈N, a complete graph on n vertices, denoted by Kn, is a graph
with n vertices and the property that every pair of distinct vertices is connected by
an edge.

Figure 1.2: A depiction of Kn for n = 2,3,4,5, and 6.

Definition 4. An edge-coloring of a graph G = (V ,E) is an assignment of a color to
each edge of the graph. A graph that has been edge-colored is called monochromatic
if all of its edges are the same color.

Ramsey’s Theorem for graphs. For any n,m ∈ N there exists R = R(n,m) ∈ N
such that any edge-coloring of KR with at most m colors contains a monochromatic
copy of Kn as a subgraph.

Let us illustrate the content of Ramsey’s Theorem for graphs by looking at
an example. If the edge-coloring consists only of two colors, say red and blue,
and we assume n = 3, then Ramsey’s Theorem asserts that there exists a number
R(3,2) such that any edge-coloring of a complete graph on R(3,2) vertices admits
a monochromatic triangle. Note that R(3,2) cannot equal 5, because Figure 1.3
below shows a coloring of K5 containing no monochromatic triangle. However, taking

Figure 1.3: An edge-coloring of K5 containing no monochromatic copy of K3.

R(3,2)= 6 already works. Indeed, through some trial-and-error, one quickly realizes
that it is impossible to find an edge-coloring of K6 using only 2 colors that avoids
monochromatic triangles. For instance, Figure 1.4 below shows a complete graph
on 6 vertices where all but one edge have been colored either red or blue. As can
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be seen from the picture, it is impossible to complete the coloring without creating
either a red or a blue triangle.

Figure 1.4: An almost-complete edge-coloring of K6 that cannot be completed without
creating a monochromatic copy of K3. This example illustrates that it is impossible
to color K6 using two colors without producing a monochromatic copy of K3.

The best possible value for R(n,m) is called the Ramsey number for (n,m). Below
is a list of Ramsey numbers known to date:

(n,m) Ramsey Number
(3,2) 6
(4,2) 18
(3,3) 17
(3,4) 30
(5,2) unknown
(3,5) unknown
(4,3) unknown

...

1.2. Ramsey’s Theorem for 2-sets

Definition 5. A 2-set is a set consisting of exactly two elements. Given a set X , a
2-subset of X is any subset of X that is a 2-set. We will use X (2) to denote the set of
all 2-subsets of X .

We have already seen examples of 2-subsets in the previous section. Indeed, the
set of edges E of a graph G = (V ,E) consists of 2-subsets of the set of vertices V . In
other words, E ⊆V (2). Note that a graph G = (V ,E) is a complete graph if and only if
E =V (2).

Definition 6. Let X be a set. A coloring of X (2) is an assignment of a color to each
2-subset of X . We call X (2) monochromatic if all elements in X (2) have the same
color.
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The following can be viewed as an “infinitary” version of Ramsey’s Theorem for
graphs.

Ramsey’s Theorem for 2-sets. Let X be an infinite set. Then for any finite coloring
of X (2) there exists an infinite subset Y ⊆ X such that Y (2) is monochromatic.

Proof. Fix an arbitrary element x1 ∈ X and note that any 2-set of the from {x1, x}
for x ∈ X\{x1} has a certain color. Since the number of colors is finite but the set
X\{x1} is infinite, there exists an infinite subset X1 ⊆ X\{x1} such that all 2-sets of
the from {x1, x} for x ∈ X1 have the same color. Now fix an arbitrary element x2 ∈ X1
and let us repeat the same procedure. Any 2-set of the from {x2, x} for x ∈ X1\{x2}
has a certain color. For the same reason as before, since the number of colors is finite
but the set X1\{x2} is infinite, there exists an infinite subset X2 ⊆ X1\{x1} such all
2-sets of the from {x2, x} for x ∈ X2 have the same color. Continuing this procedure
produces an infinite sequence of distinct elements x1, x2, x3, . . . and a nested family
of infinite sets X ⊇ X1 ⊇ X2 ⊇ X3 ⊇ . . . such that for all i ∈N the set {{xi, x} : x ∈ X i} is
monochromatic. Moreover, we have xi+1 ∈ X i for all i ∈N.

Let ci denote the color of elements in the set {{xi, x} : x ∈ X i}. Then c1, c2, c3, . . . is
an infinite sequence of colors. Since there are only finitely many colors, one color
must appear infinitely often in this sequence. In other words, there exists a color c
and an infinite sequence i1 < i2 < i3 < . . . ∈N such that cik = c for all k ∈N.

To finish the proof, define Y = {xik : k ∈N} and observe that any 2-subset of Y is of
the form {xik , xi`} for k < ` ∈N. Since xi` ∈ X i`−1 and X i`−1 ⊆ X ik , the 2-set {xik , xi`}
has the color c. Hence all 2-subsets of Y have the color c, which proves that Y (2) is
monochromatic.

Proposition 7. Ramsey’s Theorem for 2-sets implies Ramsey’s Theorem for graphs.

Proof. We shall prove the contrapositive. Suppose V1,V2, . . . is an infinite sequence
of distinct vertices and let KR denote the complete graph on the vertices V1, . . . ,VR .
If Ramsey’s Theorem for graphs is false then for some n,m ∈ N and every R ∈
N there exists an edge-coloring χR : {V1, . . . ,VR}(2) → {1, . . . ,m} of KR admitting no
monochromatic copy of Kn.

If s 6 R then any edge-coloring of KR induces an edge-coloring of Ks, because
Ks is a subgraph of KR . In particular, we can restrict χR to Ks and obtain an edge-
coloring of Ks with at most m colors admitting no monochromatic copy of Kn. Let us
denote this restriction of χR to Ks by χR,s.

Set R1 =N. Consider the sequence of colors (χR,1)R∈R1 , all of which are edge-
colorings of K1. Since there are only finitely many possibilities of coloring the edges
of K1 with m colors and R1 is infinite, there exists an infinite subset R2 ⊆R1 such
that (χR,1)R∈R2 all yield the same edge-coloring of K1. Next, we can repeat the same
argument with R2 in place of R1 and χR,2 in place of χR,1. Indeed, since there
are only finitely many possibilities of coloring the edges of K2 with m colors and
(χR,2)R∈R2 is an infinite sequence of edge-coloring of K2, there exists an infinite
subset R3 ⊆ R2 such that all colorings in (χR,2)R∈R3 are identical. By continuing
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this procedure we end up with an infinite family of nested sets R1 ⊇R2 ⊇R3 ⊇ . . .
such that all edge-colorings in {χR,s : R ∈Rs} are identical. In other words, for all
R1,R2 ∈Rs and all distinct i, j ∈ {1, . . . , s} the edge {Vi,Vj} has the same color with
respect to χR1 and χR2 .

Next define a finite coloring of N(2) by assigning to each 2-subset {i, j} ∈N(2) the
same color as the edge {Vi,Vj} under the coloring χR , where R is any element in Rs
and s is any number bigger than both i and j. Due to our construction, the choice of
the color does not depend on which R ∈Rs or which s bigger than i and j we choose.
To finish the proof, note that with this coloring of N(2) there does not exist a subset
Y ⊆N with |Y |> n and such that Y (2) is monochormatic, because the existence of
such a set would imply the existence of a monochromatic copy of Kn with respect
to the coloring χR for sufficiently large R, which we know is not possible. This also
means that there exists no infinite subset Y ⊆N such that Y (2) is monochormatic,
thus contradicting Ramsey’s Theorem for 2-sets.

1.3. Schur’s Theorem

Fermat’s Last Theorem states that for m> 3 the equation

xm + ym = zm (1.3.1)

has no positive integer solutions x, y, z ∈N. For centuries, this remained one of the
biggest open problems in mathematics, and one whose intriguing nature captivated
many mathematicians. Among them was also Issai Schur, who investigated a
natural, localized version of Fermat’s Last Theorem. More precisely, he wondered
whether for any m> 2 the congruence equation

xm + ym ≡ zm (mod p) (1.3.2)

possesses non-trivial solutions for all but finitely many primes p. Note that any non-
trivial solution to Fermat’s equation xm + ym = zm also offers a non-trivial solution
to Schur’s equation xm + ym ≡ zm (mod p) for all primes p satisfying p > zm, but not
the other way around. In order to address (1.3.2), Schur proved a theorem that is
often regarded as the earliest result in Ramsey Theory:

Schur’s Theorem ([Sch17]). For any m ∈N there exists S = S(m) ∈N such that if
the set {1,2, . . . ,S} is colored using at most m colors then there exist monochromatic
x, y, z ∈ {1,2, . . . ,S} with x+ y= z.

Proof. Take S = R(3,m), where R(3,m) is the Ramsey number for (3,m). Let KS de-
note the complete graph on S vertices and denote the vertices of KS by V1,V2, . . . ,VS.
Any coloring of the set {1,2, . . . ,S} induces an edge-coloring on KS by assigning to
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each edge {Vi,Vj} the color of the number |i− j| ∈ {1,2, . . . ,S}. According to Ramsey’s
Theorem for graphs, KS contains a monochromatic triangle. Let Va, Vb, and Vc, for
a < b < c, be the vertices of this monochromatic triangle. By setting

x = b−a, y= c−b, and z = c−a,

it is then easy to check that x, y, z have the same color and satisfy x+ y= z.

With the help of the above theorem, Schur was able to show that, contrary to
Fermat’s equation (1.3.1), its “local” counterpart (1.3.2) does possess non-trivial
solutions.

Theorem 8. Let m ∈ N. There exists F = F(m) such that for all prime numbers
p > F there exist x, y, z ∈ {1,2, . . . , p−1} with xm + ym ≡ zm (mod p).

For the proof of Theorem 8, we will need the following basic fact from algebra,
the proof of which is left to the interested reader.

Lemma 9. Let (K ,+, ·) be a field and f (x) ∈ K[x] a polynomial of degree deg( f )= m
with coefficients in K . Then the number of roots of f (x) is at most m.

Let us now see the proof of Theorem 8.

Proof of Theorem 8. Take F = S(m), where S(m) is as guaranteed by Schur’s The-
orem. Let p be any prime number bigger than F. The set Fp = {0,1, . . . , p−1} of
congruence classes modulo p naturally forms a field (Fp,+, ·) under the modular
arithmetic operations + and ·. Let F×p = Fp\{0} and consider the set

C := {xm : x ∈ F×p}.

Note that C is a subgroup of the multiplicative group (F×p , ·). This means that F×p
can be covered by cosets of C. More precisely, there exist coset representatives
g1, g2, . . . , gr ∈ F×p such that

F×p = g1C∪ g2C∪ . . .∪ grC. (1.3.3)

It follows from Lemma 9 that for any y ∈ F×p the equation xm ≡ y (mod p) has at
most m solutions, because the polynomial xm − y can have no more than m roots.
So any y ∈ F×p admits at most m representation of the from xm, which implies that
that m|C|> |F×p |. It follows that C can have at most m cosets, or in other words,
r 6 m. Since p > F, the set {1, . . . ,F} is a subset of F×p = {1,2, . . . , p−1} and hence
(1.3.3) yields a partition of the set {1, . . . ,F} involving r disjoint cells. We can think
of this partition as a coloring of {1, . . . ,F} using r colors. Since F = S(m) and r 6 m,
it follows form Schur’s Theorem that there exist monochromatic x̃, ỹ, z̃ ∈ {1,2, . . . ,F}
for which x̃+ ỹ = z̃. Since x̃, ỹ, z̃ have the same color, they all belong to the same
coset. In other words, there exists a coset representative g i ∈ {g1, . . . , gr} such that
x̃, ỹ, z̃ ∈ g iC. Take any x, y, z ∈ F×p for which

x̃ ≡ g ixm (mod p), ỹ≡ g i ym (mod p), and z̃ ≡ g i zm (mod p),
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which is possible because x̃, ỹ, z̃ ∈ g iC. Then we have

g ixm + g i ym ≡ g i zm (mod p),

from which it follows that

xm + ym ≡ zm (mod p),

because g i 6≡ 0 (mod p).
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