Combinatorial Number Theory

LECTURE NOTES

Contents

1	Ramsey's Theorem					
	1.1	Ramsey's Theorem for graphs	3			
	1.2	Ramsey's Theorem for 2-sets	5			
	1.3	Schur's Theorem	7			

Chapter 1

Ramsey's Theorem

1.1. Ramsey's Theorem for graphs

Definition 1. A graph G = (V, E) is a set V of points, called *vertices*, and a set E of distinct pairs of vertices, called *edges*.

Definition 2. A subgraph G' = (V', E') of a graph G = (V, E) is a graph such that $V' \subseteq V$ and $E' \subseteq E$.

Figure 1.1 below depicts a graph G with four vertices $V = \{V_1, V_2, V_3, V_4\}$ and four edges $E = \{e_1, e_2, e_3, e_4\}$, where $e_1 = \{V_1, V_2\}$, $e_2 = \{V_2, V_3\}$, $e_3 = \{V_3, V_4\}$, and $e_4 = \{V_2, V_4\}$. Note that edges are *unordered* pairs of vertices, meaning that $\{V_1, V_2\}$ and $\{V_2, V_1\}$ refer to the same edge. Next to it is a graph G' = (V', E') with $V' = V = \{V_1, V_2, V_3, V_4\}$ and $E' = \{e_1, e_3\}$. Since $V' \subseteq V$ and $E' \subseteq E$, we deduce that G' is a subgraph of G.

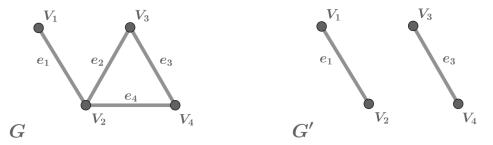


Figure 1.1: A graph G and one of its subgraphs G'.

Definition 3. Given $n \in \mathbb{N}$, a complete graph on n vertices, denoted by K_n , is a graph with n vertices and the property that every pair of distinct vertices is connected by an edge.

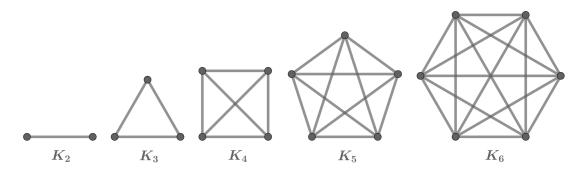


Figure 1.2: A depiction of K_n for n = 2, 3, 4, 5, and 6.

Definition 4. An *edge-coloring* of a graph G = (V, E) is an assignment of a color to each edge of the graph. A graph that has been edge-colored is called *monochromatic* if all of its edges are the same color.

Ramsey's Theorem for graphs. For any $n, m \in \mathbb{N}$ there exists $R = R(n, m) \in \mathbb{N}$ such that any edge-coloring of K_R with at most m colors contains a monochromatic copy of K_n as a subgraph.

Let us illustrate the content of Ramsey's Theorem for graphs by looking at an example. If the edge-coloring consists only of two colors, say red and blue, and we assume n = 3, then Ramsey's Theorem asserts that there exists a number R(3,2) such that any edge-coloring of a complete graph on R(3,2) vertices admits a monochromatic triangle. Note that R(3,2) cannot equal 5, because Figure 1.3 below shows a coloring of K_5 containing no monochromatic triangle. However, taking

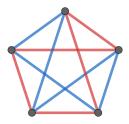


Figure 1.3: An edge-coloring of K_5 containing no monochromatic copy of K_3 .

R(3,2)=6 already works. Indeed, through some trial-and-error, one quickly realizes that it is impossible to find an edge-coloring of K_6 using only 2 colors that avoids monochromatic triangles. For instance, Figure 1.4 below shows a complete graph on 6 vertices where all but one edge have been colored either red or blue. As can

be seen from the picture, it is impossible to complete the coloring without creating either a red or a blue triangle.

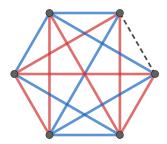


Figure 1.4: An almost-complete edge-coloring of K_6 that cannot be completed without creating a monochromatic copy of K_3 . This example illustrates that it is impossible to color K_6 using two colors without producing a monochromatic copy of K_3 .

The best possible value for R(n,m) is called the *Ramsey number* for (n,m). Below is a list of Ramsey numbers known to date:

(n,m)	Ramsey Number
(3,2)	6
(4,2)	18
(3,3)	17
(3,4)	30
(5,2)	unknown
(3,5)	unknown
(4,3)	unknown
•	

1.2. Ramsey's Theorem for 2-sets

Definition 5. A 2-set is a set consisting of exactly two elements. Given a set X, a 2-subset of X is any subset of X that is a 2-set. We will use $X^{(2)}$ to denote the set of all 2-subsets of X.

We have already seen examples of 2-subsets in the previous section. Indeed, the set of edges E of a graph G = (V, E) consists of 2-subsets of the set of vertices V. In other words, $E \subseteq V^{(2)}$. Note that a graph G = (V, E) is a complete graph if and only if $E = V^{(2)}$.

Definition 6. Let X be a set. A coloring of $X^{(2)}$ is an assignment of a color to each 2-subset of X. We call $X^{(2)}$ monochromatic if all elements in $X^{(2)}$ have the same color.

The following can be viewed as an "infinitary" version of Ramsey's Theorem for graphs.

Ramsey's Theorem for 2-sets. Let X be an infinite set. Then for any finite coloring of $X^{(2)}$ there exists an infinite subset $Y \subseteq X$ such that $Y^{(2)}$ is monochromatic.

Proof. Fix an arbitrary element $x_1 \in X$ and note that any 2-set of the from $\{x_1, x\}$ for $x \in X \setminus \{x_1\}$ has a certain color. Since the number of colors is finite but the set $X \setminus \{x_1\}$ is infinite, there exists an infinite subset $X_1 \subseteq X \setminus \{x_1\}$ such that all 2-sets of the from $\{x_1, x\}$ for $x \in X_1$ have the same color. Now fix an arbitrary element $x_2 \in X_1$ and let us repeat the same procedure. Any 2-set of the from $\{x_2, x\}$ for $x \in X_1 \setminus \{x_2\}$ has a certain color. For the same reason as before, since the number of colors is finite but the set $X_1 \setminus \{x_2\}$ is infinite, there exists an infinite subset $X_2 \subseteq X_1 \setminus \{x_1\}$ such all 2-sets of the from $\{x_2, x\}$ for $x \in X_2$ have the same color. Continuing this procedure produces an infinite sequence of distinct elements x_1, x_2, x_3, \ldots and a nested family of infinite sets $X \supseteq X_1 \supseteq X_2 \supseteq X_3 \supseteq \ldots$ such that for all $i \in \mathbb{N}$ the set $\{\{x_i, x\} : x \in X_i\}$ is monochromatic. Moreover, we have $x_{i+1} \in X_i$ for all $i \in \mathbb{N}$.

Let c_i denote the color of elements in the set $\{\{x_i,x\}:x\in X_i\}$. Then $c_1,c_2,c_3,...$ is an infinite sequence of colors. Since there are only finitely many colors, one color must appear infinitely often in this sequence. In other words, there exists a color c and an infinite sequence $i_1 < i_2 < i_3 < ... \in \mathbb{N}$ such that $c_{i_k} = c$ for all $k \in \mathbb{N}$.

To finish the proof, define $Y = \{x_{i_k} : k \in \mathbb{N}\}$ and observe that any 2-subset of Y is of the form $\{x_{i_k}, x_{i_\ell}\}$ for $k < \ell \in \mathbb{N}$. Since $x_{i_\ell} \in X_{i_{\ell-1}}$ and $X_{i_{\ell-1}} \subseteq X_{i_k}$, the 2-set $\{x_{i_k}, x_{i_\ell}\}$ has the color c. Hence all 2-subsets of Y have the color c, which proves that $Y^{(2)}$ is monochromatic.

Proposition 7. Ramsey's Theorem for 2-sets implies Ramsey's Theorem for graphs.

Proof. We shall prove the contrapositive. Suppose V_1, V_2, \ldots is an infinite sequence of distinct vertices and let K_R denote the complete graph on the vertices V_1, \ldots, V_R . If Ramsey's Theorem for graphs is false then for some $n, m \in \mathbb{N}$ and every $R \in \mathbb{N}$ there exists an edge-coloring $\chi_R : \{V_1, \ldots, V_R\}^{(2)} \to \{1, \ldots, m\}$ of K_R admitting no monochromatic copy of K_n .

If $s \leq R$ then any edge-coloring of K_R induces an edge-coloring of K_s , because K_s is a subgraph of K_R . In particular, we can restrict χ_R to K_s and obtain an edge-coloring of K_s with at most m colors admitting no monochromatic copy of K_n . Let us denote this restriction of χ_R to K_s by $\chi_{R,s}$.

Set $\mathscr{R}_1 = \mathbb{N}$. Consider the sequence of colors $(\chi_{R,1})_{R \in \mathscr{R}_1}$, all of which are edge-colorings of K_1 . Since there are only finitely many possibilities of coloring the edges of K_1 with m colors and \mathscr{R}_1 is infinite, there exists an infinite subset $\mathscr{R}_2 \subseteq \mathscr{R}_1$ such that $(\chi_{R,1})_{R \in \mathscr{R}_2}$ all yield the same edge-coloring of K_1 . Next, we can repeat the same argument with \mathscr{R}_2 in place of \mathscr{R}_1 and $\chi_{R,2}$ in place of $\chi_{R,1}$. Indeed, since there are only finitely many possibilities of coloring the edges of K_2 with m colors and $(\chi_{R,2})_{R \in \mathscr{R}_2}$ is an infinite sequence of edge-coloring of K_2 , there exists an infinite subset $\mathscr{R}_3 \subseteq \mathscr{R}_2$ such that all colorings in $(\chi_{R,2})_{R \in \mathscr{R}_3}$ are identical. By continuing

this procedure we end up with an infinite family of nested sets $\mathcal{R}_1 \supseteq \mathcal{R}_2 \supseteq \mathcal{R}_3 \supseteq \dots$ such that all edge-colorings in $\{\chi_{R,s} : R \in \mathcal{R}_s\}$ are identical. In other words, for all $R_1, R_2 \in \mathcal{R}_s$ and all distinct $i, j \in \{1, \dots, s\}$ the edge $\{V_i, V_j\}$ has the same color with respect to χ_{R_1} and χ_{R_2} .

Next define a finite coloring of $\mathbb{N}^{(2)}$ by assigning to each 2-subset $\{i,j\} \in \mathbb{N}^{(2)}$ the same color as the edge $\{V_i,V_j\}$ under the coloring χ_R , where R is any element in \mathscr{R}_s and s is any number bigger than both i and j. Due to our construction, the choice of the color does not depend on which $R \in \mathscr{R}_s$ or which s bigger than i and j we choose. To finish the proof, note that with this coloring of $\mathbb{N}^{(2)}$ there does not exist a subset $Y \subseteq \mathbb{N}$ with $|Y| \geqslant n$ and such that $Y^{(2)}$ is monochormatic, because the existence of such a set would imply the existence of a monochromatic copy of K_n with respect to the coloring χ_R for sufficiently large R, which we know is not possible. This also means that there exists no infinite subset $Y \subseteq \mathbb{N}$ such that $Y^{(2)}$ is monochormatic, thus contradicting Ramsey's Theorem for 2-sets.

1.3. Schur's Theorem

Fermat's Last Theorem states that for $m \ge 3$ the equation

$$x^m + y^m = z^m \tag{1.3.1}$$

has no positive integer solutions $x, y, z \in \mathbb{N}$. For centuries, this remained one of the biggest open problems in mathematics, and one whose intriguing nature captivated many mathematicians. Among them was also Issai Schur, who investigated a natural, localized version of Fermat's Last Theorem. More precisely, he wondered whether for any $m \ge 2$ the congruence equation

$$x^m + y^m \equiv z^m \pmod{p} \tag{1.3.2}$$

possesses non-trivial solutions for all but finitely many primes p. Note that any non-trivial solution to Fermat's equation $x^m + y^m = z^m$ also offers a non-trivial solution to Schur's equation $x^m + y^m \equiv z^m \pmod{p}$ for all primes p satisfying $p > z^m$, but not the other way around. In order to address (1.3.2), Schur proved a theorem that is often regarded as the earliest result in Ramsey Theory:

Schur's Theorem ([Sch17]). For any $m \in \mathbb{N}$ there exists $S = S(m) \in \mathbb{N}$ such that if the set $\{1,2,\ldots,S\}$ is colored using at most m colors then there exist monochromatic $x,y,z \in \{1,2,\ldots,S\}$ with x+y=z.

Proof. Take S = R(3, m), where R(3, m) is the Ramsey number for (3, m). Let K_S denote the complete graph on S vertices and denote the vertices of K_S by V_1, V_2, \ldots, V_S . Any coloring of the set $\{1, 2, \ldots, S\}$ induces an edge-coloring on K_S by assigning to

each edge $\{V_i, V_j\}$ the color of the number $|i-j| \in \{1, 2, ..., S\}$. According to Ramsey's Theorem for graphs, K_S contains a monochromatic triangle. Let V_a , V_b , and V_c , for a < b < c, be the vertices of this monochromatic triangle. By setting

$$x = b - a$$
, $y = c - b$, and $z = c - a$,

it is then easy to check that x, y, z have the same color and satisfy x + y = z.

With the help of the above theorem, Schur was able to show that, contrary to Fermat's equation (1.3.1), its "local" counterpart (1.3.2) does possess non-trivial solutions.

Theorem 8. Let $m \in \mathbb{N}$. There exists F = F(m) such that for all prime numbers p > F there exist $x, y, z \in \{1, 2, ..., p-1\}$ with $x^m + y^m \equiv z^m \pmod{p}$.

For the proof of Theorem 8, we will need the following basic fact from algebra, the proof of which is left to the interested reader.

Lemma 9. Let $(K, +, \cdot)$ be a field and $f(x) \in K[x]$ a polynomial of degree $\deg(f) = m$ with coefficients in K. Then the number of roots of f(x) is at most m.

Let us now see the proof of Theorem 8.

Proof of Theorem 8. Take F = S(m), where S(m) is as guaranteed by Schur's Theorem. Let p be any prime number bigger than F. The set $\mathbb{F}_p = \{0, 1, ..., p-1\}$ of congruence classes modulo p naturally forms a field $(\mathbb{F}_p, +, \cdot)$ under the modular arithmetic operations + and \cdot . Let $\mathbb{F}_p^{\times} = \mathbb{F}_p \setminus \{0\}$ and consider the set

$$C := \{x^m : x \in \mathbb{F}_p^{\times}\}.$$

Note that C is a subgroup of the multiplicative group $(\mathbb{F}_p^{\times}, \cdot)$. This means that \mathbb{F}_p^{\times} can be covered by cosets of C. More precisely, there exist coset representatives $g_1, g_2, \ldots, g_r \in \mathbb{F}_p^{\times}$ such that

$$\mathbb{F}_p^{\times} = g_1 C \cup g_2 C \cup \ldots \cup g_r C. \tag{1.3.3}$$

It follows from Lemma 9 that for any $y \in \mathbb{F}_p^{\times}$ the equation $x^m \equiv y \pmod p$ has at most m solutions, because the polynomial $x^m - y$ can have no more than m roots. So any $y \in \mathbb{F}_p^{\times}$ admits at most m representation of the from x^m , which implies that that $m|C| \geqslant |\mathbb{F}_p^{\times}|$. It follows that C can have at most m cosets, or in other words, $r \leqslant m$. Since p > F, the set $\{1, \ldots, F\}$ is a subset of $\mathbb{F}_p^{\times} = \{1, 2, \ldots, p-1\}$ and hence (1.3.3) yields a partition of the set $\{1, \ldots, F\}$ involving r disjoint cells. We can think of this partition as a coloring of $\{1, \ldots, F\}$ using r colors. Since F = S(m) and $r \leqslant m$, it follows form Schur's Theorem that there exist monochromatic $\tilde{x}, \tilde{y}, \tilde{z} \in \{1, 2, \ldots, F\}$ for which $\tilde{x} + \tilde{y} = \tilde{z}$. Since $\tilde{x}, \tilde{y}, \tilde{z}$ have the same color, they all belong to the same coset. In other words, there exists a coset representative $g_i \in \{g_1, \ldots, g_r\}$ such that $\tilde{x}, \tilde{y}, \tilde{z} \in g_i C$. Take any $x, y, z \in \mathbb{F}_p^{\times}$ for which

$$\tilde{x} \equiv g_i x^m \pmod{p}$$
, $\tilde{y} \equiv g_i y^m \pmod{p}$, and $\tilde{z} \equiv g_i z^m \pmod{p}$,

which is possible because $\tilde{x}, \tilde{y}, \tilde{z} \in g_i C$. Then we have

$$g_i x^m + g_i y^m \equiv g_i z^m \pmod{p},$$

from which it follows that

$$x^m + y^m \equiv z^m \pmod{p},$$

because $g_i \not\equiv 0 \pmod{p}$.

Bibliography

[Sch17] I. SCHUR, Über die Kongruenz $x^m + y^m \equiv z^m$ (mod. p), Jahresbericht der Deutschen Mathematiker-Vereinigung 25 (1917), 114–116. Available at http://eudml.org/doc/145475.